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Abstract: Optical atomic clocks produce highly stable frequency standards and frequency combs
bridge clock frequencies with hundreds of terahertz difference. In this paper, we propose a hybrid
clock scheme, where a light source pumps an active optical clock through a microresonator-based
nonlinear third harmonic process, serves as a passive optical clock via indirectly locking its
frequency to an atomic transition, and drives a chip-scale microcomb whose mode spacing is
stabilized using the active optical clock. The operation of the whole hybrid system is investigated
through simulation analysis. The numerical results show: (i) The short-term frequency stability
of the passive optical clock follows an Allan deviation of σy(τ)= 9.3× 10−14τ−1/2 with the
averaging time τ, limited by the population fluctuations of interrogated atoms. (ii) The frequency
stability of the active optical clock reaches σy(τ)= 6.2× 10−15τ−1/2, which is close to the
quantum noise limit. (iii) The mode spacing of the stabilized microcomb has a shot-noise-limited
Allan deviation of σy(τ)= 1.9× 10−11τ−1/2. Our hybrid scheme may be realized using recently
developed technologies in (micro)photonics and atomic physics, paving the way towards on-chip
optical frequency comparison, synthesis, and synchronization.
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1. Introduction

Metrology deals with high precision measurements of physical parameters, among which
frequency can be determined with the highest degree of accuracy using atomic clocks [1,2]. Thus
far, optical clocks have surpassed their microwave counterparts in both stability and accuracy
by over two orders of magnitude [3–5], which paves the way towards an optical redefinition of
the SI second. Most optical clocks are operated in a passive fashion, where the frequency of
a pre-stabilized laser is referenced to a narrow-line optical transition of carefully engineered
atoms [6]. Active optical clocks, which directly produce highly stable optical frequency standards
without extra steps of stabilizing the laser frequency to an atomic transition, have also been
proposed [7] and demonstrated [8]. Indeed, the underlying mechanism of such active operation
is the substantial suppression of the cavity pulling effect on the lasing dynamics in the so-called
bad-cavity limit. Frequency comparison is essential for evaluating the performance of an atomic
clock and optical frequency combs bridge frequency standards from microwave to optical domain
with orders of magnitude difference, facilitating the frequency comparison between different
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atomic clocks [9]. Yet, to our best knowledge, the direct frequency comparison between passive
and active optical clocks through a frequency comb has not been demonstrated.

Engineering integrated metrology systems that include optical frequency comparison, syn-
chronization, and synthesis benefits broad out-of-the-lab applications such as satellite-based
geo-positioning and communication [10]. Its implementation demands a vast simplification of
the metrology configuration and the subtle design of each component, for example, reducing the
numbers of light sources and optical cavities and minimizing their physical volumes. Owing to
ultrahigh Q factors and small mode volumes, whispering-gallery-mode (WGM) microresonators
enable nonlinear frequency conversion at low pump thresholds and large conversion efficien-
cies at room temperature [11–13]. In particular, microresonator-based frequency combs, i.e.,
microcombs, which make use of the nonlinear Kerr process and four-wave mixing, possess the
advantages of miniaturized size, simple structure, and low power consumption, compared to
conventional optical frequency combs. Recently, microcombs have been employed in diverse
fields, including atomic and molecular spectroscopy [14], integrated photonics for optical
communications and data processing [15], and chip-scale frequency metrology [16]. Various
approaches of fully stabilizing microcombs have been exploited, for example, referencing two
comb modes respectively to two atomic transitions through frequency doubling [17] and f − 2f
self-referencing in an octave-spanning spectrum [18]. Nevertheless, the microcomb spectra
mainly cover the infrared regime while the wavelengths of most optical clocks are in the visible
band. Extending the microcomb spectra to the visible regime is still challenging [19,20].

In this paper, we propose a hybrid clock scheme, where the full stabilization of a Kerr
microcomb is implemented using two optical atomic clocks that are operated in distinct, i.e.,
passive and active, modes. Both clock wavelengths, 1359 and 1377 nm, are in the infrared
regime that is accessible by the microcomb spectrum. The whole system contains only one
light source that also serves as a passive optical clock via indirectly locking its frequency to an
atomic transition. Other optical modes at different wavelengths are generated through the third
harmonic (TH) nonlinear optical process and the lasing action. We evaluate the performance
of optical clocks and microcomb through the simulation analysis. The numerical results show
that the frequency stabilities of passive and active optical clocks follow 9.3 × 10−14τ−1/2 and
6.2× 10−15τ−1/2, respectively, with the averaging time τ, and the mode spacing of the microcomb
has an Allan deviation of σy(τ) = 1.9 × 10−11τ−1/2. Recent technologies in (micro)photonics
and atomic physics ensure the successful implement of the proposed hybrid scheme.

2. Physical system

Figure 1(a) illustrates the hybrid clock scheme, in which there is only one light source at
λclock1 = 1377 nm. This light source may be a commercial laser system. As we will see below, the
light source can serve as a passive optical clock by indirectly locking its frequency to an atomic
transition. The laser beam is split into two sub-beams. One sub-beam enters the microcavity
I, where the TH optical wave at λTH = 459 nm is generated. The output TH light excites the
ensemble I of 133Cs atoms from the ground |1⟩ = 6s 2S1/2 state to the excited |4⟩ = 7p 2P1/2 state.
Atoms in |4⟩ emit fluorescent photons that are collected by a photodetector (PD). The electrical
signal produced by the PD is fed back into the light source, indirectly stabilizing its central
frequency ωclock1 = 2πc/λclock1 to the atomic |1⟩ − |4⟩ transition. Here, c is the speed of light
in vacuum. Passing an optical amplifier (OA), the TH light further drives the 133Cs ensemble
II that is placed inside a low-Q (bad) optical cavity (frequency ωL). This cavity is resonantly
coupled with the |2⟩ = 6p 2P1/2 − |3⟩ = 7s 2S1/2 transition in 133Cs. A sufficient driving strength
creates the population inversion between two atomic states and, as a result, the lasing action
occurs. Due to the substantial suppression of the cavity pulling effect, this bad-cavity laser is
operated as an active optical clock at λclock2 = 1359 nm [7]. The other sub-beam of the laser
source (i.e., passive optical clock) is coupled into the microcavity II, where an optical frequency
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comb (microcomb) is created via the nonlinear Kerr process. The beat note between microcomb
and active clock laser is used to control the light power launched into the microcavity II, thereby
stabilizing the mode spacing of the microcomb [21].
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Fig. 1. Hybrid clock system. (a) Schematic diagram. One sub-beam from a light source
at λclock1 = 1377 nm undergoes the TH nonlinear process and drives the fluorescence
of 133Cs atoms. The light source serves as a passive optical clock when its frequency is
stabilized using the fluorescence signal. The TH light further pumps an active clock laser at
λclock2 = 1359 nm. The other sub-beam from the light source pumps a Kerr microcomb.
(b) Energy-level structure of 133Cs. The 6s 2S1/2−7p 2P1/2 transition serves as the frequency
reference line for the passive optical clock and the pump line for the active optical clock. The
6p 2P1/2 − 7s 2S1/2 transition plays the role of the active clock laser transition. (c) Allan
deviation of the free-running light source (open circles), the passive optical clock (filled
circles), and the active optical clock (filled squares). Solid curves: curve fitting. Dashed
line: quantum noise limit.

In our hybrid scheme, two atomic ensembles play different roles, where the ensemble I is used to
stabilize the central frequency of the passive optical clock while the ensemble II acts as the optical
gain medium for the active clock laser. Figure 1(b) depicts the energy level structure of 133Cs.
For simplicity, here we do not consider the hyperfine structure of 133Cs. The atomic |1⟩ − |4⟩
transition at 459 nm is used as the indirect frequency reference for the passive optical clock and
the pump line for the active optical clock. The atomic |2⟩ − |3⟩ transition at 1359 nm works as
the laser transition that couples to the bad cavity. We use γij with (i, j = 1, 2, 3, 4) to denote the
(effective) decay rate of the atom from |i⟩ to |j⟩ with γ21 = 2π × 4.6 MHz, γ31 = 2π × 1.8 MHz,
γ32 = 2π × 1.0 MHz, γ41 = 2π × 0.5 MHz, γ42 = 2π × 0.02 MHz, and γ43 = 2π × 0.6 MHz [22].
It should be noted that although, for example, the |1⟩ − |3⟩ transition is electric-dipole forbidden,
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atoms in |3⟩ can decay to |1⟩ through the spontaneous emission from |3⟩ to 6p 2P3/2 and further
to |1⟩, leading to the effective decay rate γ31. In this work, we assume that two atomic ensembles
have been carefully engineered such that Doppler effect and interatomic collisions are negligible.

In what follows, we discuss the passive and active optical clocks and the microcomb in detail.

3. Third harmonic generation and passive optical clock

The light at λTH = 459 nm can be generated through the TH nonlinear optical process in the
silica WGM microcavity I (for example, toroid with a major radius of 13 µm and a minor radius
of 3 µm [12]), where the sub-beam (power P and frequency ωclock1) from the light source excites
a WGM that we label with "p" (frequency ωp and quality factor Qp) at 1377 nm via a tapered
optical fiber and the TH optical wave is resonant to a WGM that we label with "s" (frequency ωs
and quality factor Qs), as shown in Fig. 1(a). We write the intracavity fields of the two WGMs as
Ej=p,s(r, t) = 1

2 aj(t)ψj(r)e−iωj t with amplitudes aj(t) and normalized WGMs ψj(r). It is convenient
to introduce the amplitudes bj(t) = [

ϵ0
2

∫
n2

j |ψj(r)|2dr]aj(t) with the vacuum permittivity ϵ0 and
refractive indices nj, and |bj(t)|2 correspond to the intracavity energies of two fields. The coupling
dynamics between bp(t) and bs(t) is described by [23]

ḃs(t) = [−ωs/(2Qs) + i (3ωclock1 − ωs)] bs + i3γTHb3
p, (1)

ḃp(t) =
[︁
−ωp/(2Qp) + i

(︁
ωclock1 − ωp

)︁ ]︁
bp + iγ∗THbs

(︂
b∗p
)︂2
+ i

√︁
κpP, (2)

where the nonlinear TH coefficient takes the form γTH =
ωsχTH

2ϵ0

∫
ψ∗

s (r)ψ3
p (r)dr with the TH

susceptibility χTH ∼ 10−22 m2 V−2 for fused silica [24] and κp (<ωp
Qp

) is the coupling rate of the
pump beam into the microcavity I. The condition of energy conservation requires ωs = 3ωp.
The WGM dispersion caused by different high-order transverse modes compensates the material
dispersion, ensuring the phase matching condition [12].

In the steady state (ss), one obtains (1 + xy4)y = 1 with x = 3( 2Qs
ωs

)(
2Qp
ωp

)5(|γTH |κpP)2 and

y = (
ωp
2Qp

)
|bp,ss |√
κpP

for the resonant pump ωclock1 = ωp. The TH conversion efficiency is then given

by ηTH = κs
|bs,ss |

2

3P = (
κsQs
ωs

)(
κpQp
ωp

)4xy6. Here, we have defined bj,ss = bj(t → ∞) with j = p, s and
κs (<ωs

Qs
) accounts for the coupling rate of the TH signal out of the microcavity I. The efficiency

ηTH reaches its maximum max(ηTH) = (
κsQs
ωs

)(
κpQp
ωp

) when x = 16 and y = 1/2 (Supplement
1). Generally, the pump mode is a fundamental WGM and κp is equal to half of ωp

Qp
under the

critical coupling point [25]. In contrast, the TH coupling efficiency is relatively low because
of the high-order transverse mode. Substituting typical values Qs,p = 107, κsQs

ωs
= 0.5 %, and

γTH = 7×1018 J−1 s−1, we have max(ηTH) = 0.25 % with the corresponding pump power P = 2.8
mW. The resultant output power of the TH light reaches κs |bs,ss |

2 = 7.0 µW.
In practice, environmental noise perturbs the frequencies of light source and WGMs,

ωclock1 = ωclock1,0 + δωclock1(t), ωp = ωp,0 + δωp(t), and ωs = ωs,0 + δωs(t) with constant
values (ωclock1,0, ωp,0, ωs,0) and fluctuations (δωclock1(t), δωp(t), δωs(t)). The TH genera-
tion requires ωs,0 = 3ωp,0. Generally, the frequency noise spectrum of the free-running light
source Sclock1(f ) = ω−2

clock1,0

∫
⟨δωclock1(t)δωclock1(t + τ)⟩e−i2πfτdτ takes the form Sclock1(f ) =

hclock1,0f 0 + hclock1,−2f −2. The white frequency component (∝ f 0) determines the laser linewidth
∆ωclock1 = ω

2
clock1,0hclock1,0/2 while the random walk component (∝ f −2) leads to the long-term

drift of the laser frequency. The typical ∆ωclock1 = 2π × 1 MHz gives hclock1,0 = 6.7 × 10−24 s
and the corresponding short-term Allan deviation is σy(τ) =

√︁
hclock1,0/2τ = 1.8 × 10−12τ−1/2.

Similarly, we have the frequency noise spectra of two WGMs [26], Sp(f ) = ω−2
p,0

∫
⟨δωp(t)δωp(t +
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τ)⟩e−i2πfτdτ = hp,0f 0+hp,−2f −2 and Ss(f ) = ω−2
s,0

∫
⟨δωs(t)δωs(t+τ)⟩e−i2πfτdτ = hs,0f 0+hs,−2f −2

with hp,0 =
2

Qpωp,0
= 1.5 × 10−22 s and hs,0 =

2
Qsωs,0

= 5.0 × 10−23 s. For simplicity, we assume
h−2 = hclock1,−2 = hp,−2 = hs,−2 = 1.0 × 10−20 s−1 with the corresponding long-term Allan
deviation σy(τ) =

√︁
2π2h−2τ/3 = 2.5 × 10−10τ1/2.

The absolute frequency ωclock1 of the light source may be indirectly stabilized to an atomic
transition. We let the output TH light √κsbs (frequency ωTH = 2πc/λTH = 3ωclock1) further
derive the |1⟩ − |4⟩ transition (frequency ω41) of the 133Cs ensemble I (atom number Nat). The
dynamics of atomic variables is governed by the following c-number Langevin equations [27]
(Supplement 1)

Ṅ1(t) = γ21N2 + γ31N3 + γ41N4 + (Ω
∗M14 +ΩM∗

14) + FN1 (t), (3)

Ṅ2(t) = −γ21N2 + γ32N3 + γ42N4 + FN2 (t), (4)

Ṅ3(t) = −(γ31 + γ32)N3 + γ43N4 + FN3 (t), (5)

Ṅ4(t) = −(γ41 + γ42 + γ43)N4 − (Ω∗M14 +ΩM∗
14) + FN4 (t), (6)

Ṁ14(t) = [−Γ41 + i(ωTH − ω41)]M14 +Ω(N4 − N1) + FM14 (t), (7)

where Nj=1,2,3,4 denotes the population of atoms in the atomic |j⟩ state and M14 accounts for the
macroscopic polarization corresponding to the atomic |1⟩ − |4⟩ transition whose decoherence
rate is Γ41 = 2(γ41 + γ42 + γ43). Fluctuations Fα(t) with α = N1,2,3,4 and M14 originate
from the spontaneous emission of atoms and follow the correlation functions ⟨Fα(t)⟩ = 0 and
⟨Fα(t)Fβ(t′)⟩ = 2D(α, β)δ(t − t′). All nonvanishing diffusion coefficients 2D(α, β) are listed

in Supplement 1. The Rabi frequency is defined as Ω = −

√︂
2κs

ϵ0cATH

d41bs
2ℏ with the effective area

ATH of the TH beam and the reduced Planck constant ℏ. The transition dipole moment d41 of
the atomic |1⟩ − |4⟩ transition is computed to be 0.18 ea0 with the elementary charge e and the
Bohr radius a0. The conservation of atoms leads to

∑︁4
i=1 Ni = Nat. We choose a TH beam waist

radius of 0.6 mm, an atom–light interaction length of 2 cm, and an atomic density of 1010 cm−3,
resulting in Nat = 2.5 × 108 and ATH = 1 mm2.

Dropping fluctuation terms δωclock1,p,s(t) and Fα(t) with α = N1,2,3,4 and M14 in Eqs. (1)–(7),
one may compute the dependence of the steady-state population N4,ss = N4(t → ∞) of atoms
in |4⟩ on the pump detuning ∆p = ωclock1,0 − ωp,0. As shown in Fig. 2, the atomic excitation
exhibits a Lorentzian lineshape with a full width at half maximum (FWHM) Γp = 2π × 1.4
MHz, close to the natural linewidth of the |1⟩ − |4⟩ transition. Atoms in |4⟩ emit fluorescent
photons at 459 nm, which are measured by a photodetector (PD). Detecting fluorescence allows
for locking the frequency ωclock1(t) to the atomic |1⟩ − |4⟩ transition in an indirect manner. We
set the locking point at ∆p = −Γp/2, where the gradient of the frequency discrimination curve is
k = dN4,ss/d∆p = 0.44 s.

According to the frequency noise spectra (Sclock1(f ), Sp(f ), Ss(f )), one may numerically
produce the frequency fluctuations (δωclock1(t), δωp(t), δωs(t)) by digitally filtering a stochastic
white field [28]. Langevin forces Fα(t) with α = N1,2,3,4 and M14 can be generated following the
method in [29,30] (Supplement 1). Thus, we simulate the frequency stabilization of the light
source based on Eqs. (1)–(7). The integration time of the detection electronics is set to be Ti = 0.1
ms. Within the time period from nTi to (n + 1)Ti with n ∈ Z, the number of fluorescent photons
collected by the photodetector is Nph = γ41

∫
N4(t)dt + ∆Nph. The extra term ∆Nph is a random

number that originates from the shot noise whose mean is zero and standard deviation is N1/2
ph .

Here, we have assumed 100-percent efficiency of the photon detection. The average value of
δωclock1(t) within this integration period is then derived as ⟨δωclock1⟩Ti = (Nph −Nph,bia)/(kγ41Ti),
where Nph,bia denotes the steady-state number of fluorescent photons at the locking point. As a
result, the light source frequency ωclock1 is corrected accordingly in the next integration period.

https://doi.org/10.6084/m9.figshare.21960161
https://doi.org/10.6084/m9.figshare.21960161
https://doi.org/10.6084/m9.figshare.21960161


Research Article Vol. 31, No. 4 / 13 Feb 2023 / Optics Express 6233

�p 

�p / 2�   (MHz) 

–3 –2 –1 0 1 2 3 

k = dN4,ss /d�p 

N
4

,ss
  /

 N
at

 

0.01 

0 

0 1 2 3 4 5 

Time (s) 

0 

–0.5 

��
cl

o
ck

1
(t)

 /
 2
� 

(M
H

z)
 

Locking on 

Free running 
Locking point 

Fig. 2. Dependence of the fluorescence response on the pump detuning∆p = ωclock1,0−ωp,0.
The frequency ωclock1(t) of the light source is locked to the side of the fluorescence curve.
The dashed line corresponds to the gradient k = dN4,ss/d∆p at the locking point. Inset:
Frequency fluctuations δωclock1(t) of the free-running/frequency-locked light source. The
stabilized light source is operated as a passive optical clock.

The Allan deviation σy(τ) of the simulatedωclock1 is summarized in Fig. 1(c). The free-running
ωclock1 follows the short-termσy(τ) = 1.8×10−12τ−1/2 and the long-termσy(τ) = 2.5×10−10τ1/2.
In contrast, the stabilized ωclock1 obeys the short-term σy(τ) = 9.3 × 10−14τ−1/2, over one order
of magnitude better than that of the free-running laser, and the long-term σy(τ) = 5.2×10−13τ1/2,
corresponding to an improvement factor of about 500. Consequently, the light source at
λclock1 is operated as an optical frequency standard whose frequency is passively stabilized
to the atomic |1⟩ − |4⟩ transition in an indirect manner. The short-term stability is better
than the recently demonstrated compact optical atomic clock, where a 1556-nm laser beam is
frequency doubled (via the second harmonic generation) and further stabilized to the 778-nm
two-photon transition in rubidium [31]. We compute the stability limit set by atomic fluctuations,
σy(τ) =

Γp
ωclock1,0

1
SNR

√︂
Ti
τ = 9.1× 10−14τ−1/2 with the signal-to-noise ratio SNR = N4,ss

2

√︂
Γ41

2D(N4,N4)

and the diffusion coefficient 2D(N4, N4) associated with the population N4 of atoms in |4⟩
(Supplement 1). In addition, the stability limited by the photon shot noise is evaluated as
σy(τ) =

Γp
ωclock1,0

1√
Nph

√︂
Ti
τ = 3.1 × 10−15τ−1/2. Therefore, the stability of the passive optical clock

is primarily limited by atomic fluctuations.

4. Active optical clock

As shown in Fig. 1(a), after passing an optical amplifier (OA), the TH light √κsbs interacts with
the 133Cs ensemble II. For simplicity, we still use the symbols Ni=1,2,3,4, M14, Nat, and Ω to
denote the population of atoms in |i⟩, the macroscopic polarization corresponding to the |1⟩ − |4⟩
transition, the atom number, and the driving strength. Here, we assume that the frequency ωTH
of the TH light has been shifted to ω41. Atoms in |1⟩ are excited to |4⟩ and then decay to |3⟩,
creating the population inversion between |2⟩ and |3⟩. A low-Q cavity (frequency ωL and loss
rate κL) is coupled with the |2⟩ − |3⟩ transition (frequency ω32 and transition dipole moment
d32 = 1.6 ea0) with the single-photon coupling strength g = −

√︂
ωL

2ℏϵ0VL
d32 = −2π × 10 kHz and

the cavity mode volume VL = π(0.5 mm)2(5 cm). The lasing action (wavelength λclock2 = 1359
nm) occurs once the optical gain overcomes optical losses. Following the Heisenberg–Langevin
approach [27], the equations of motion of intracavity field A and atomic variables are derived as
(Supplement 1)

Ȧ(t) = [−κL/2 − i(ωL − ω32)]A + gM23, (8)

Ṅ1(t) = γ21N2 + γ31N3 + γ41N4 + (Ω
∗M14 +ΩM∗

14) + FN1 (t), (9)

https://doi.org/10.6084/m9.figshare.21960161
https://doi.org/10.6084/m9.figshare.21960161
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Ṅ2(t) = −γ21N2 + γ32N3 + γ42N4 + g(M∗
23A + A∗M23) + FN2 (t), (10)

Ṅ3(t) = −(γ31 + γ32)N3 + γ43N4 − g(M∗
23A + A∗M23) + FN3 (t), (11)

Ṅ4(t) = −(γ41 + γ42 + γ43)N4 − (Ω∗M14 +ΩM∗
14) + FN4 (t), (12)

Ṁ14(t) = [−Γ41 + i(ωTH − ω41)]M14 +Ω(N4 − N1) + FM14 (t), (13)

Ṁ23(t) = −Γ32M32 + g(N3 − N2)A + FM23 (t), (14)

where M23 represents the macroscopic polarization corresponding to the |2⟩ − |3⟩ transition and
Γ32 = (γ21 + γ31 + γ32)/2 is the decoherence rate of M23. Fluctuations Fα(t) with α = N1,2,3,4
and M14,23 follow the correlation functions ⟨Fα(t)⟩ = 0 and ⟨Fα(t)Fβ(t′)⟩ = 2D(α, β)δ(t − t′).
All nonvanishing diffusion coefficients 2D(α, β) are listed in Supplement 1. As we will see
below, this laser has an outstanding frequency stability in the bad-cavity limit (κL ≫ Γ32) due to
the substantial suppression of the cavity pulling effect [7]. Thus, the laser directly serves as an
optical frequency standard, i.e., an active optical clock.

Let us first consider the steady state of the laser system in the resonant coupling situation,
ωL = ω32 and ωTH = ω41. The corresponding analytical solutions are given in Supplement 1.
Figures 3(a) and (b) illustrate the dependence of the output power Pclock2 = κLℏωL |Ass |

2 with
Ass = A(t → ∞) and the laser linewidth ∆ωclock2 on the cavity loss rate κL and the atom number
Nat. In the good-cavity regime (κL<Γ32), the required minimal Nat for the lasing action can be
small, for example, Nat ∼ 105 with κL/Γ32 = 0.1, corresponding to QL = ωL/κL = 5 × 108. The
linewidth ∆ωclock2 reaches the Hz level (or even less than 1 Hz). However, in this regime the
central frequency of the clock laser suffers huge cavity frequency fluctuations through the cavity
pulling effect, consequently deteriorating the laser frequency stability [32]. As κL grows, the
increased cavity loss strongly elevates the threshold and ∆ωclock2 also goes up. Nevertheless, in
the bad-cavity regime (κ>Γ32), Pclock2 can exceed 1 µW, which is high enough for locking the
phase of an optical local oscillator. Interestingly, once the system enters the bad-cavity regime,
∆ωclock2 starts declining as κL is increased. According to [33], the quantum-limited linewidth of a
laser takes the form ∆ωclock2 = ∆ωST(1+ κL/2Γ32)

−2 with the usual Schawlow–Townes linewidth
∆ωST. When κL ≫ Γ32, the factor (1+κL/2Γ32)

−2 decreases rapidly, thereby suppressing∆ωclock2.
The underlying mechanism may be ascribed to the fact that the phase diffusion process gets
slowed down due to the memory effect of the relatively long-lifetime polarization of atoms [34].
We choose Nat = 2.5×108, i.e., the two atomic ensembles have the same atom number. As shown
in Fig. 3(c), in the bad-cavity regime ∆ωclock2 reaches its minimum min(∆ωclock2) = 2π × 2.8 Hz
at κ/Γ32 = 90, where, in what follows, we set the operating point of the active clock laser. The
corresponding cavity quality factor is QL = 6 × 105 and the output power Pclock2 approximates
20 µW.

We now consider the frequency stability of the active clock laser. In the adiabatic approximation,
κL ≫ Γ41,32, one has A(t) = [κL/2 + i(ωL − ω32)]

−1gM23(t). It is seen that two factors, noise
in ωL(t) = ωL,0 + δωL(t) and fluctuations of the polarization M23, influence A(t). The resonant
atom–cavity coupling gives ωL,0 = ω32. Generally, the power spectral density of the cavity
frequency noise SL(f ) = ω−2

L,0

∫
⟨δωL(t)δωL(t + τ)⟩e−i2πfτdτ takes the form SL(f ) = hL,0f 0 +

hL,−1f −1 + hL,−2f −2 with hL,0 = 2κL/ω
2
L,0 = 2.3 × 10−21 s. Here, we ignore the flicker frequency

noise component (∝ f −1), which originates from Brownian thermal-mechanical fluctuations of
cavity mirrors, due to the low QL and assume hL,−2 = h−2. One may simulate the dynamics
of the active optical clock by numerically generating the frequency noise δωL(t) and Langevin
fluctuations Fα(t) with α = N1,2,3,4 and M14,23 according to SL(f ) and diffusion coefficients
2D(α, β) of atomic variables (Supplement 1). Figure 3(d) depicts the laser spectrum Sclock2(ω) =∫
⟨A(t)A(t + τ)⟩e−iωτdτ in the absence of fluctuations in ωL and bs. The corresponding spectral

broadening completely arises from the fluctuations associated with atomic variables. The curve
fitting gives the FWHM of 2π×3 Hz, well matching the analytical result of 2π×2.8 Hz and verifying

https://doi.org/10.6084/m9.figshare.21960161
https://doi.org/10.6084/m9.figshare.21960161
https://doi.org/10.6084/m9.figshare.21960161
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Fig. 3. Steady state of the active optical clock. (a) Dependence of the output power Pclock2
on the cavity loss rate κL and the atom number Nat. The dashed line denotes the laser
threshold. The dash-dotted line corresponds to the boundary between good- and bad-cavity
regimes. (b) Laser linewidth ∆ωclock2 vs. (Nat, κL). (c) Dependence of Pclock2 and ∆ωclock2
on κL with Nat = 2.5 × 108. The five-pointed star symbol: The operating point of the active
optical clock is set at κL/γ32 = 90, where Pclock2 = 20 µW and ∆ωclock2 = 2π × 2.8 Hz
(five-pointed star symbol in (a) and (b)). (d) Power density spectrum of the active clock laser
at the operating point. The curve fitting gives the FWHM of 2π × 3 Hz. For all plots, the
pump strength is |Ω|/Γ41 = 5.

the validity of the simulation. Since this ∆ωclock2 is entirely induced by atomic fluctuations, the
corresponding Allan deviation σy(τ) = ω

−1
clock2,0(∆ωclock2/τ)

1/2 = 3.0 × 10−15τ−1/2 is referred to
as the quantum-noise-limited stability.

Considering the fluctuations in ωL and bs, we perform the long-term simulation of the active
clock dynamics, compute the clock frequency ωclock2 (see Supplement 1), and evaluate its Allan
deviation. The simulation result is σy(τ) = 6.2 × 10−15τ−1/2 (see Fig. 1(c)), which is higher
than the quantum-noise-limited stability due to the residual cavity-pulling effect. As we will see
below, this active optical clock can be used to stabilize a Kerr microcomb.

5. Microcomb

Thus far, we have only considered one sub-beam from the light source (i.e., passive optical clock).
As shown in Fig. 1(a), the other sub-beam whose power is enhanced using a semiconductor
optical amplifier (SOA) drives a certain mode (i.e., pump mode) in the silica microcavity II
that may be a toroid microresonator (major radius of 109 µm and minor radius of 3 µm). A
sufficient input power excites multiple WGMs with stable phases around the pump mode through
the nonlinear Kerr process and four-wave mixing [37], forming an optical frequency microcomb
[38]. For the sake of simplicity, we still use the symbols ωp, Qp, and ∆p = ωclock1 −ωp to denote
the pump mode frequency, the corresponding quality factor, and the detuning between the passive
clock laser and the pump mode, respectively.

https://doi.org/10.6084/m9.figshare.21960161
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The dynamics of the microcomb field Ecomb(t, θ) (in units of W1/2) is governed by the
Lugiato–Lefever equation [39]

∂

∂t
Ecomb(t, θ) =

[︃
−
ωp

2Qp
+ i∆p − i

L
τR

β

2
∂2

∂θ2 + i
L
τR
γKerr |Ecomb(t, θ)|2

]︃
Ecomb(t, θ) +

√
P
τR

, (15)

with the slow time t, the fast phase 0<θ<2π, the dispersion coefficient β = (2π/τR)
2GVD,

the round-trip duration τR = L/vg, the microcavity circumference L, the group velocity vg,
and the group dispersion GVD. The nonlinear Kerr coefficient is given by γKerr =

8πn0n2
3Aeffλclock1

with the refractive index n0, the second-order nonlinear refractive index n2, and the effective
cross-section area Aeff of the pump mode. Varying SOA tunes the input pump power P launched
into the microcavity II. Indeed, both vg and GVD are linked to the group refractive index
ng(ω, T) = n(ω, T) + ω ∂n(ω,T)

∂ω , i.e., vg = c/ng and GVD = ∂
∂ω

1
vg

. The common refractive index
n(ω, T) of the medium depends on the optical frequency ω and the temperature T . We compute
ng according to [40,41] (see Fig. 4(a)). Table 1 lists the relevant physical parameters of the
microcomb at λclock1 and room temperature T0 = 293 K.

Pump 

1377 nm 

1300 1350 1400 1450 

Wavelength (nm) 

P
o

w
er

 (
1

0
 d

B
 /

d
iv

) 

1359 nm 

10 FSR Soliton 

Fast time (ps) 

�1 0 1 

P
o

w
er

 (
ar

b
. 

u
n

it
) 

4�10�5 

�4�10�5 �10 

0 

10 

292 293 294 

Temperature T (K) 

��
 (

n
m

) 

ng(�clock1+��,T) / ng(�clock1,T0) �1 

(b) 

10–11 

10–7 
� y

(�
) 

10–9 �frep(t) 
(MHz) 

Time (s) 

on 

off 

0 100 

0.1 

�0.1 

10–2 10–1 100 101 102 

�   (s) 

103 

(a) (c) 

Fig. 4. Kerr microcomb. (a) Dependence of the group refractive index ng on the wavelength
change δλ = λ − λclock1 and temperature T around (λclock1 = 1377 nm, T0 = 293 K).
(b) Single-soliton microcomb. The 10th comb mode on the blue-detuned side of the pump
mode is near resonant to the active optical clock. Inset: single soliton. (c) Allan deviation
σy(τ) of the mode spacing frep(t) for the microcomb in the free-running/stabilized state.
Inset: fluctuations δfrep(t) of the mode spacing when the feedback loop is switched off/on.

Figure 4(b) shows the microcomb spectrum that is numerically derived from Eq. (15) with
the input power P = 1.5 mW and the detuning ∆p = −3(ωp/Qp). Multiple sidebands are
located around the pump mode (corresponding to the highest peak). The entire microcomb is
characterized by two degrees of freedom, namely the offset frequency of the carrier envelope
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Table 1. Physical parameters of the microresonator-based optical frequency comb at λclock1 and
room temperature T0 = 293 K.

Physical parameter Symbol Value

Circumference L 2π × 109 µm

Group dispersion GVD −9.5 fs2 mm−1

Group velocity vg 2.1 × 108 m s−1

Round-trip duration τ 3.3 ps

Dispersion coefficient β −0.034 m−1

Free spectral range FSR 0.3 THz

Refractive index n0 1.446

Second-order nonlinear refractive index n2 2.5 × 10−20 m2 W−1 [35]

Effective cross-section area Aeff 1.8 × 10−12 m2 [36]

Kerr coefficient γKerr 0.12 W−1 m−1

Quality factor of pump mode Qp 106

and the mode spacing (repetition frequency) frep. The microcomb is in the single-soliton state,
leading to frep = FSR. The first degree of freedom has already been controlled since the passive
optical clock directly drives one comb mode. Next we consider the stabilization of frep.

In practice, the temperature T fluctuates around T0. The small mode volume of the microcavity
makes the mode spacing frep sensitive to the fluctuation δT(t) = T − T0 that is averaged over the
whole mode volume. In the linear approximation, the change of the group index ng caused by δT
is expressed as δng = ng(T) − ng(T0) = ηnδT with ηn = ∂ng(T0)/∂T = 1.6 × 10−5 K−1. Here, we
neglect the thermo-mechanical effects that change the circulating length L. The induced fluctuation
of frep is then written as δfrep(t) = −[ηnfrep,0/ng(T0)]δT(t) with frep,0 = c/Lng(T0). According to
the experimental results in [18,20], the typical Allan deviation of y(t) = δfrep(t)/frep,0 follows
σy(τ>5 × 10−2 s) = 5 × 10−8τ1/2. Thus, the long-term drift of δT(t) has σy(τ) =

√︁
2π2hT ,−2τ/3

with y(t) = δT(t)/T0 and hT ,−2 = 3.7 × 10−11 s−1. To verify this, we numerically generate
the temperature fluctuations δT(t) and compute the mode spacing frep(t) by solving Eq. (15),
where we have used GVD(T) = GVD(T0) + ηGVDδT with ηGVD = −10.1 fs2 mm−1 K−1 and
τR(T) = τR(T0) + ητδT with ητ = 3.7 × 10−5 ps K−1. In addition, the pump mode frequency can
be approximated by ωp(T) = ωp(T0) + ηωδT with ηω = −2π × 2.4 GHz K−1 and the stabilized
clock frequency ωclock1 follows the Allan deviation shown in Fig. 1(c). The numerical σy(τ) of
δfrep(t) is presented in Fig. 4(c), well matching the analytical expression.

In experiment, the change of the mode spacing can be derived by measuring the beat note
ibeat(t) = Re[A∗(t)Em(t)] between the active optical clock A(t) and its nearest mode Em(t), whose
frequency is ωp + mfrep with m = 10, in the microcomb Ecomb(t, θ). The beat frequency is set at
ωbeat = 2π × 50 MHz. We compare the beat note with a local RF signal at ωbeat and extract the
phase difference ∆ϕ over the integration time Ti of the detection electronics. Consequently, the
average value ⟨δfrep⟩Ti of δfrep(t) within Ti is given by ⟨δfrep⟩Ti =

∆φ/Ti
2πm +

ωbeat
2πm

∆Nph
√
ξN1N2

. The extra
noise ∆Nph represents the shot noise that has a zero mean and a standard deviation

√
N1 + N2

with N1 = (
2Qp
ωpτR

)2[1 + ( 2∆pQp
ωp

)2]−1 PTi
2ℏωclock1

and N2 =
Pclock2Ti
ℏωclock2

. Here, ξ = 6.6 × 10−3 accounts for
the energy percentage of Em(t) in Ecomb(t, θ) and we have assumed the critical coupling between
the fiber and the microcavity II.

The dynamics of temperature fluctuations δT(t) follows the equation [42]

δṪ(t) = −ΓTδT + ηTδE(t) + FT (t), (16)
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where ΓT = D/Vth denotes the thermal relaxation rate and ηT = 2 × 1014 K J−1 s−1 represents
the photothermal heating coefficient. The fluctuations of the intracavity light energy δE(t) =
δ |
∫

Ecomb(t, θ) dθ
2π |

2τR ≈ (
2Qp
ωpτR

)2[1 + (
2∆pQp
ωp

)2]−1τRδP(t) originate from the fluctuations δP(t)
of the input power. Here, D = 9.5 × 10−7 m2 s−1 corresponds to the thermal diffusivity and
Vth = 2×10−14 m3 is the effective thermal volume of the microcavity, leading to ΓT = 2π×4 MHz.
The correlation function of thermal fluctuations FT (t) is given by ⟨FT (t)FT (t′)⟩ =

2ΓT kBT2
0

ρCVth
δ(t − t′)

with the Boltzmann constant kB, the material density ρ = 2200 kg m−3, and the specific
heat capacity C = 670 J kg−1 K−1. From Eq. (16), one may derive the noise spectrum of
temperature fluctuations ST (f ) =

∫
⟨δT(t)δT(t + τ)⟩e−i2πfτdτ ≈

2ΓT kBT2
0

ρCVth
|ΓT + i2πf |−2, where the

component associated with δE(t) has been omitted. Thus, the thermal-noise-limited stability
of the mode spacing frep(t), i.e., Allan deviation σy(τ) of y(t) = δfrep(t)/frep,0, is given by
σy(τ) = ητ frep,0[2

∫ Ti

0 ST (f ) sin4(πfτ)
(πfτ)2 df ]1/2 ≈ 6 × 10−15τ−1/2. Generally, this thermal limit is well

below the shot-noise-limited stability (see below). In addition, the time scale of interest in this
work is much larger than the thermal dissipation scale 1/ΓT . Thus, we simplify Eq. (16) as
δT(t) = (ηT/ΓT )δE(t), that is, the temperature fluctuations is mainly caused by the pump power
fluctuations. Controlling SOA (so as to control the pump power launched into the microcavity II)
allows for stabilizing δT , thereby stabilizing δfrep.

One may numerically simulate the stabilization of the mode spacing frep(t). We firstly calculate
the average value ⟨δfrep⟩Ti of δfrep(t) within the integration time Ti = 10−2 s. The temperature
change averaged over Ti is then computed as ⟨δT⟩Ti = ⟨δfrep⟩Ti/(ητ f 2

rep,0). The corresponding
change of the light energy absorbed by the microcavity II reads ⟨δE⟩Ti = (ΓT/ηT )⟨δT⟩Ti .
Consequently, the input power P is corrected by (

ωpτR
2Qp

)2[1 + (
2∆pQp
ωp

)2]⟨δE⟩Ti/Ti for the next
integration period. Numerical results are presented in Fig. 4(c). The Allan deviation of
the stabilized frep(t) follows σy(τ) = 1.9 × 10−11τ−1/2, matching the shot-noise limit σy(τ) =

ωbeat
2πmfrep,0

√︂
N1+N2
ξN1N2

√︂
Ti
τ = 1.8 × 10−11τ−1/2.

6. Discussion

In summary, we have proposed a hybrid clock scheme, where a passive optical clock pumps an
active optical clock and a Kerr microcomb whose mode spacing is stabilized using the active
optical clock. The passive optical clock is locked to one side of the fluorescence spectrum of
the 6s 2S1/2 − 7p 2P1/2 transition in 133Cs via the TH generation. The frequency stabilization
may be improved by locking the clock frequency to the zero crossing point in the modulation
transfer spectroscopy for 133Cs [43]. The cancellation of Doppler broadening allows the use of
thermal atoms, simplifying the preparation of the atomic ensemble. In particular, the passive
optical clock can be miniaturized by confining 133Cs atoms in a chip-scale vapor cell [16].

The active optical clock, i.e., bad-cavity laser, produces an infrared frequency standard that is
located in the microcomb spectrum. The pump energy is supplied by the passive optical clock
through the TH generation. Although in this work we focus on the atomic 6p 2P1/2−7s 2S1/2 (clock)
and 6s 2S1/2 − 7p 2P1/2 (pump) transitions in 133Cs, one may also choose the 6p 2P3/2 − 7s 2S1/2
clock transition at 1470 nm. In addition, the active optical clock scheme is applicable to
rubidium atoms with clock 5p 2P1/2,3/2 − 6s 2S1/2 (wavelengths of 1323 and 1366 nm) and
pump 5s 2S1/2 − 6p 2P1/2 (wavelength of 421 nm) transitions. Despite the absence of the Allan
deviation measurement, active optical clocks have been demonstrated in [44,45] with thermal
atoms. Employing cold atoms as the gain medium potentially improves the clock stability [46].

Two degrees of freedom of the microcomb are stabilized using passive and active optical
clocks. Alternatively, one may re-design the microcavity II to reduce the FSR down to tens of
GHz. Thus, the mode spacing frep can be directly measured using a fast photodiode and the pump
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power launched into the microcavity II is controlled accordingly. In this case, the active clock is
separated from the stabilization loop of the microcomb, allowing for performing the frequency
comparison between two optical clocks with distinct (i.e., passive vs. active) operation modes
through the microcomb.
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